题目内容
19.解方程或解比例.$\frac{1}{2}$x+$\frac{1}{6}$=$\frac{1}{4}$
x-$\frac{3}{20}$x=8.5
$\frac{1}{10}$:x=$\frac{1}{8}$:$\frac{1}{4}$.
分析 (1)首先根据等式的性质,两边同时减去$\frac{1}{6}$,然后两边再同时乘2即可.
(2)首先化简,然后根据等式的性质,两边同时除以$\frac{17}{20}$即可.
(3)首先根据比例的基本性质化简,然后根据等式的性质,两边同时乘8即可.
解答 解:(1)$\frac{1}{2}$x+$\frac{1}{6}$=$\frac{1}{4}$
$\frac{1}{2}$x+$\frac{1}{6}$-$\frac{1}{6}$=$\frac{1}{4}$-$\frac{1}{6}$
$\frac{1}{2}$x=$\frac{1}{12}$
$\frac{1}{2}$x×2=$\frac{1}{12}$×2
x=$\frac{1}{6}$
(2)x-$\frac{3}{20}$x=8.5
$\frac{17}{20}$x=8.5
$\frac{17}{20}$x$÷\frac{17}{20}$=$\frac{17}{2}$$÷\frac{17}{20}$
x=10
(3)$\frac{1}{10}$:x=$\frac{1}{8}$:$\frac{1}{4}$
$\frac{1}{8}$x=$\frac{1}{10}$×$\frac{1}{4}$
$\frac{1}{8}$x=$\frac{1}{40}$
$\frac{1}{8}$x×8=$\frac{1}{40}$×8
x=$\frac{1}{5}$
点评 此题主要考查了根据等式的性质解方程的能力,即等式两边同时加上或同时减去、同时乘以或同时除以一个数(0除外),两边仍相等.
| A. | $\frac{6}{7}$ | B. | 1$\frac{1}{9}$ | C. | $\frac{5}{6}$ | D. | $\frac{7}{8}$ |
| A. | 扩大100倍 | B. | 缩小100倍 | C. | 大小不变 |