题目内容
a1,a2,a3,…,an是满足0<a1<a2<a3…<an的自然数,且
=
+
+
+…+
,那么n的最小值是
| 13 |
| 14 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
4
4
.分析:要使n最小,就是使项数最小,则要使每一项都尽量小.a1>a2>a3>…>an>0,只是告诉我们没有任何两项的分母相同,为了便于表述,不妨设
<1,令a1=2,则
+
+…+
=
-
=
>
,
令a2=3,则
+…+
=
-
=
>
,
令a3=11,则
+…+
=
-
=
,所以a4=231.
所以,n最小值是4.
| 13 |
| 14 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 13 |
| 14 |
| 1 |
| 2 |
| 3 |
| 7 |
| 1 |
| 3 |
令a2=3,则
| 1 |
| a3 |
| 1 |
| an |
| 3 |
| 7 |
| 1 |
| 3 |
| 2 |
| 21 |
| 1 |
| 11 |
令a3=11,则
| 1 |
| a4 |
| 1 |
| an |
| 2 |
| 21 |
| 1 |
| 11 |
| 1 |
| 231 |
所以,n最小值是4.
解答:解:设
<1,令a1=2,则
+
+…+
=
-
=
>
,
令a2=3,则
+…+
=
-
=
>
,
令a3=11,则
+…+
=
-
=
,所以a4=231.
所以,n最小值是4.
| 13 |
| 14 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 13 |
| 14 |
| 1 |
| 2 |
| 3 |
| 7 |
| 1 |
| 3 |
令a2=3,则
| 1 |
| a3 |
| 1 |
| an |
| 3 |
| 7 |
| 1 |
| 3 |
| 2 |
| 21 |
| 1 |
| 11 |
令a3=11,则
| 1 |
| a4 |
| 1 |
| an |
| 2 |
| 21 |
| 1 |
| 11 |
| 1 |
| 231 |
所以,n最小值是4.
点评:此题解答的关键在于通过设数法,逐步推出问题得到答案,解决问题.
练习册系列答案
相关题目