题目内容
| 解方程: x+
|
1-
|
|
分析:(1)先根据乘法分配律改写成(1+
)x=25,即
x=25,再根据等式的性质,两边同乘
即可;
(2)根据等式的性质,两边同加上
x,得
+
x=1两边同减去
,再同乘
即可;
(3)根据等式的性质,两边同减去5,再同乘
即可.
| 1 |
| 4 |
| 5 |
| 4 |
| 4 |
| 5 |
(2)根据等式的性质,两边同加上
| 5 |
| 8 |
| 6 |
| 7 |
| 5 |
| 8 |
| 6 |
| 7 |
| 8 |
| 5 |
(3)根据等式的性质,两边同减去5,再同乘
| 7 |
| 5 |
解答:解:(1)x+
x=25,
(1+
)x=25,
x=25,
x×
=25×
,
x=20;
(2)1-
x=
,
1-
x+
x=
+
x
+
x=1
+
x-
=1-
,
x=
,
x×
=
×
,
x=
;
(3)
x+5=25,
x+5-5=25-5,
x=20,
x×
=20×
,
x=28.
| 1 |
| 4 |
(1+
| 1 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 4 |
| 5 |
| 4 |
| 5 |
x=20;
(2)1-
| 5 |
| 8 |
| 6 |
| 7 |
1-
| 5 |
| 8 |
| 5 |
| 8 |
| 6 |
| 7 |
| 5 |
| 8 |
| 6 |
| 7 |
| 5 |
| 8 |
| 6 |
| 7 |
| 5 |
| 8 |
| 6 |
| 7 |
| 6 |
| 7 |
| 5 |
| 8 |
| 1 |
| 7 |
| 5 |
| 8 |
| 8 |
| 5 |
| 1 |
| 7 |
| 8 |
| 5 |
x=
| 8 |
| 35 |
(3)
| 5 |
| 7 |
| 5 |
| 7 |
| 5 |
| 7 |
| 5 |
| 7 |
| 7 |
| 5 |
| 7 |
| 5 |
x=28.
点评:在解方程时应根据等式的性质,即等式两边同加上、同减去、同乘上或同除以某一个数(0除外),等式的两边仍相等,同时注意“=”上下要对齐.
练习册系列答案
相关题目