题目内容
探究并计算(大胆实践,你一定能探索成功!)
观察后面等式:
=1-
,
=
-
,
=
-
,将前面三个等式两边分别相加得:
+
+
4=1-
+
-
+
-
=1-
=
.
(1)猜想并写出:
=
-
-
.
(2)直接写出下面式子的计算结果:
+
+
+…+
=
.
(3)探究并计算:
+
+
+…
.
观察后面等式:
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3× |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)猜想并写出:
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
(2)直接写出下面式子的计算结果:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2006×2007 |
| 2006 |
| 2007 |
| 2006 |
| 2007 |
(3)探究并计算:
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2006×2008 |
分析:(1)(2)通过观察特例可知:一个分数的分母为两个连续自然数的乘积,可以把这个分数拆成两个分数相减的形式,据此解答;
(3)通过观察发现,算式中的每一项中的分母是两个自然数的乘积,并且都相差2,提出
,于是可把每一项拆成两个分数相减的形式,然后通过加减相互抵消,求出结果.
(3)通过观察发现,算式中的每一项中的分母是两个自然数的乘积,并且都相差2,提出
| 1 |
| 2 |
解答:解:(1)
=
-
;
(2)
+
+
+…+
,
=1-
+
-
+…+
-
,
=1-
,
=
;
(3)
+
+
+…
,
=(
-
)×
+(
-
)×
+(
-
)×
+…+(
-
)×
,
=(
-
+
-
+
-
+…+
-
)×
,
=(
-
)×
,
=
×
,
=
.
故答案为:
-
,
,
.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2006×2007 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2006 |
| 1 |
| 2007 |
=1-
| 1 |
| 2007 |
=
| 2006 |
| 2007 |
(3)
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2006×2008 |
=(
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2 |
=(
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 8 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2 |
=(
| 1 |
| 2 |
| 1 |
| 2008 |
| 1 |
| 2 |
=
| 1003 |
| 2008 |
| 1 |
| 2 |
=
| 1003 |
| 4016 |
故答案为:
| 1 |
| n |
| 1 |
| n+1 |
| 2006 |
| 2007 |
| 1003 |
| 4016 |
点评:此题考查了分数的拆项:
=
-
;
(a-b=n)=(
-
)×
.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| ab |
| 1 |
| a |
| 1 |
| b |
| 1 |
| n |
练习册系列答案
相关题目