题目内容
(1+
+
+…+
)×(
+
+…+
)-(1+
+
+…+
)×(
+
+…+
)
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2007 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2007 |
分析:此题算式较长,直接计算较麻烦,我们不妨换一个角度思考,设(1+
+
+…+
)=a,(1+
+
+…+
)=b,原式变为b×(a-1)-a×(b-1),化简后为a-b,然后把数字代入计算,得出结果,解决问题.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2007 |
解答:解:设(1+
+
+…+
)=a,(1+
+
+…+
)=b,则
(1+
+
+…+
)×(
+
+…+
)-(1+
+
+…+
)×(
+
+…+
),
=b×(a-1)-a×(b-1),
=a-b,
=(1+
+
+…+
)-(1+
+
+…+
),
=
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2007 |
(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2007 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2007 |
=b×(a-1)-a×(b-1),
=a-b,
=(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2007 |
=
| 1 |
| 2008 |
点评:此题采用了用字母代换的方法,操作方便,简单易懂,易于使学生接受.
练习册系列答案
相关题目