题目内容

计算下列式子的值:
(1+
1
2
+
1
3
+
1
4
+
1
5
+…+
1
198012
2+(
1
2
+
1
3
+
1
4
+
1
5
+…+
1
198012
2+(
1
3
+
1
4
+
1
5
+…+
1
198012
2+(
1
4
+
1
5
+…+
1
198012
2+(
1
5
+
1
6
+…+
1
198012
2+(1+
1
2
+
1
3
+
1
4
+
1
5
+…+
1
198012
分析:显然直接求解难度很大,我们试着看看是否存在递推的规律:
(1+
1
2
2+(
1
2
2+(1+
1
2
)=4,4=2×2;
(1+
1
2
+
1
3
2+(
1
2
+
1
3
2+(
1
3
2+(1+
1
2
+
1
3
)=6,6=3×2;
(1+
1
2
+
1
3
+
1
4
2+(
1
2
+
1
3
+
1
4
2+(
1
3
+
1
4
2+
1
4
2+(1+
1
2
+
1
3
+
1
4
)=8,8=4×2;
所以得出:(1+
1
2
+
1
3
+
1
4
+
1
5
+…+
1
n
2+(
1
2
+
1
3
+
1
4
+
1
5
+…+
1
n
2+(
1
3
+
1
4
+
1
5
+…+
1
n
2+(
1
4
+
1
5
+…+
1
n
2+(
1
5
+
1
6
+…+
1
n
2+(1+
1
2
+
1
3
+
1
4
+
1
5
+…+
1
n
)=n×2;据此解答即可.
解答:解:(1+
1
2
2+(
1
2
2+(1+
1
2
)=4,4=2×2;
(1+
1
2
+
1
3
2+(
1
2
+
1
3
2+(
1
3
2+(1+
1
2
+
1
3
)=6,6=3×2;
(1+
1
2
+
1
3
+
1
4
2+(
1
2
+
1
3
+
1
4
2+(
1
3
+
1
4
2+
1
4
2+(1+
1
2
+
1
3
+
1
4
)=8,8=4×2;
所以(1+
1
2
+
1
3
+
1
4
+
1
5
+…+
1
198012
2+(
1
2
+
1
3
+
1
4
+
1
5
+…+
1
198012
2+(
1
3
+
1
4
+
1
5
+…+
1
198012
2+(
1
4
+
1
5
+…+
1
198012
2+(
1
5
+
1
6
+…+
1
198012
2+(1+
1
2
+
1
3
+
1
4
+
1
5
+…+
1
198012
)=198012×2=396024.
点评:根据题意,从简单的几个数相加,找出规律,是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网