题目内容
计算下列式子的值:
(1+
+
+
+
+…+
)2+(
+
+
+
+…+
)2+(
+
+
+…+
)2+(
+
+…+
)2+(
+
+…+
)2+(1+
+
+
+
+…+
)
(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 198012 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 198012 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 198012 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 198012 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 198012 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 198012 |
分析:显然直接求解难度很大,我们试着看看是否存在递推的规律:
(1+
)2+(
)2+(1+
)=4,4=2×2;
(1+
+
)2+(
+
)2+(
)2+(1+
+
)=6,6=3×2;
(1+
+
+
)2+(
+
+
)2+(
+
)2+
2+(1+
+
+
)=8,8=4×2;
所以得出:(1+
+
+
+
+…+
)2+(
+
+
+
+…+
)2+(
+
+
+…+
)2+(
+
+…+
)2+(
+
+…+
)2+(1+
+
+
+
+…+
)=n×2;据此解答即可.
(1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
所以得出:(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
解答:解:(1+
)2+(
)2+(1+
)=4,4=2×2;
(1+
+
)2+(
+
)2+(
)2+(1+
+
)=6,6=3×2;
(1+
+
+
)2+(
+
+
)2+(
+
)2+
2+(1+
+
+
)=8,8=4×2;
所以(1+
+
+
+
+…+
)2+(
+
+
+
+…+
)2+(
+
+
+…+
)2+(
+
+…+
)2+(
+
+…+
)2+(1+
+
+
+
+…+
)=198012×2=396024.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
所以(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 198012 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 198012 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 198012 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 198012 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 198012 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 198012 |
点评:根据题意,从简单的几个数相加,找出规律,是解答此题的关键.
练习册系列答案
相关题目