题目内容
(1+
+
+…+
)×(
+
+
+…+
)-(
+
+…+
)×(1+
+
+…+
).
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2012 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2012 |
分析:通过仔细观察,发现括号中的数字很有特点,根据其特点,采用设数法解答.设设
+
+…+
=a,
+
+
+…+
=b,则原式变为:(1+a)×b-a×(1+b),然后通过计算,得出结果为b-a,最后把a和b代表的数,代入b-a中,即可得出结果.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2012 |
解答:解:设
+
+…+
=a,
+
+
+…+
=b,则原式变为:
(1+a)×b-a×(1+b),
=b+ab-a-ab,
=b-a,
=(
+
+
+…+
)-(
+
+…+
),
=
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2012 |
(1+a)×b-a×(1+b),
=b+ab-a-ab,
=b-a,
=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2012 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
=
| 1 |
| 2012 |
点评:有些问题直接计算会很麻烦,对于上述这样的问题,可以采用设数法解答,简捷易懂.
练习册系列答案
相关题目