题目内容
计算:1×2+2×4+3×6+…+1005×2010=
67727110
67727110
.分析:因为1×2+2×4+3×6+…+1005×2010=1×1×2+2×2×2+3×3×2+…+1005×1005×2=2×(1×2+2×2+3×2+…+1005×2),所以,本题据巧算公式1×2+2×2+3×2+…+n×2=n(n+1)(2n+1)÷6进行巧算即可.
解答:解:1×2+2×4+3×6+…+1005×2010
=1×1×2+2×2×2+3×3×2+…+1005×1005×2;=2×(1×2+2×2+3×2+…+1005×2),
=2×[1005×(1005+1)×(1005×2+1)÷6],
=2×(1005×1006×2011÷6),
=2×(2033181330÷6),
=2×338863555,
=677727110.
故答案为:677727110.
=1×1×2+2×2×2+3×3×2+…+1005×1005×2;=2×(1×2+2×2+3×2+…+1005×2),
=2×[1005×(1005+1)×(1005×2+1)÷6],
=2×(1005×1006×2011÷6),
=2×(2033181330÷6),
=2×338863555,
=677727110.
故答案为:677727110.
点评:1×2+2×2+3×2+…+n×2=n(n+1)(2n+1)÷6巧算中经常用到的公式之一.
练习册系列答案
相关题目