题目内容

正确计算.
(1)0.008×0.000125+0.0125÷0.04=
0.312501
0.312501

(2)1-
1
2
-
1
20
-
1
200
-
1
2000
=
889
2000
889
2000
分析:(1)先把0.0125根据除以一个数再乘上这个数,还是原数,从而变成0.000125,然后利用乘法的分配律进行计算;
(2)利用连续减去几个数等于减去这几个数的和进行计算.
解答:解:(1)0.008×0.000125+0.0125÷0.04,
=0.008×0.000125+0.000125×100÷0.04,
=0.000125×(0.008+100÷0.04),
=0.000125×(0.008+2500),
=0.000125×2500.008,
=0.312501;
(2)1-
1
2
-
1
20
-
1
200
-
1
2000

=1-(
1
2
+
1
20
+
1
200
+
1
2000
),
=1-(
1000
2000
+
100
2000
+
10
2000
+
1
2000
),
=1-
1111
2000

=
889
2000

故答案为:0.312501,
889
2000
点评:此题考查了乘法的分配律和减法的简算方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网