题目内容
仔细观察如图,寻找其中规律,试判断:第20行从左往右数第12个数是 .

考点:数表中的规律
专题:探索数的规律
分析:先找到数的分布规律,求出第n-1行结束的时候一共出现的数的个数,再求第n行从左向右的第12个数,即可求出第20行从左向右的第12个数.
解答:
解:由排列的规律可得,第n-1行结束的时候排了1+2+3+…+n-1=
n(n-1)个数.
所以第n行从左向右的第12个数
n(n-1)+12.
所以n=20时,第20行从左向右的第12个数为
n(n-1)+12
=
×20×19+12
=190+12
=202.
答:第20行从左往右数第12个数是202.
故答案为:202.
| 1 |
| 2 |
所以第n行从左向右的第12个数
| 1 |
| 2 |
所以n=20时,第20行从左向右的第12个数为
| 1 |
| 2 |
=
| 1 |
| 2 |
=190+12
=202.
答:第20行从左往右数第12个数是202.
故答案为:202.
点评:此题主要考查了数字的变化规律,探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.
练习册系列答案
相关题目