题目内容
11.计算51$\frac{2}{3}$×$\frac{3}{5}$+71$\frac{3}{4}$×$\frac{4}{7}$+91$\frac{4}{5}$×$\frac{5}{9}$;
(3.6×0.75×1.2)÷(1.5×24×0.18);
$\frac{201{0}^{2}+3×2006+12}{201{0}^{3}-2010×9}$.
分析 ①51$\frac{2}{3}$×$\frac{3}{5}$+71$\frac{3}{4}$×$\frac{4}{7}$+91$\frac{4}{5}$×$\frac{5}{9}$,运用乘法分配律简算;
②(3.6×0.75×1.2)÷(1.5×24×0.18),运用除法的运算性质简算;
③$\frac{201{0}^{2}+3×2006+12}{201{0}^{3}-2010×9}$.首先要分别对分子、分母运用乘法分配律的逆运算、平方差公式进行化简,得出相同的部分,通过约分,得出结果.
解答 解:①51$\frac{2}{3}$×$\frac{3}{5}$+71$\frac{3}{4}$×$\frac{4}{7}$+91$\frac{4}{5}$×$\frac{5}{9}$
=(51×$\frac{3}{5}+\frac{2}{3}×\frac{3}{5}$)+(71×$\frac{4}{7}+\frac{3}{4}×\frac{4}{7}$)+(91×$\frac{5}{9}+\frac{4}{5}×\frac{5}{9}$)
=(30.6+0.4)+($\frac{501}{7}+\frac{3}{7}$)+($\frac{455}{9}$+$\frac{4}{9}$)
=31+72+51
=103+51
=154;
②(3.6×0.75×1.2)÷(1.5×24×0.18)
=(3.6÷0.18)×(0.75÷1.5)×(1.2÷24)
=20×0.5×0.05
=10×0.05
=0.5;
③$\frac{201{0}^{2}+3×2006+12}{201{0}^{3}-2010×9}$
=$\frac{201{0}^{2}+3×(2006+4)}{2010×(201{0}^{2}-9)}$
=$\frac{201{0}^{2}+3×2010}{2010×(2010+3)×(2010-3)}$
=$\frac{2010×(2010+3)}{2010×(2010+3)×(2010-3)}$
=$\frac{1}{2007}$.
点评 凡是简算的题目,数字都有一定的特点,因此应注意审题,主要是运用所学性质与定律以及数与数之间的特殊关系灵活进行解答.
| A. | 9:16 | B. | 6:5 | C. | 25:36 |