题目内容

有一串数
1
1
1
2
2
2
1
2
1
3
2
3
3
3
2
3
1
3
,…这串数从左开始数,第
111
111
 个数是
11
11
分析:观察发现,分母是1的分数有1个,分子是1;
分母是2的分数有3个,分子分别是1,2,1;
分母是3的分数有5个,分子分别是1,2,3,2,1;
分母是4的分数有7个,分子分别是1,2,3,4,3,2,1.
分数的个数是连续增加的奇数;
11
11
是分母是11的第11个分数,只要求出从分母是1的分数到分母是10的分数一共有多少个,然后再加上11即可.
解答:解:
1
11
前共有数字:
1+3+5+7+9+11+13+15+17+19,
=(1+19)×10÷2,
=20×10÷2,
=100(个);
100+11=111(个);
11
11
是第111个数.
故答案为:111.
点评:本题关键是通过给出的数字发现分数个数的变化规律,再根据规律求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网