题目内容
1+
+(
+
)+(
+
+
)+…+(
+
+
+…+
+
).
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 50 |
| 2 |
| 50 |
| 3 |
| 50 |
| 48 |
| 50 |
| 49 |
| 50 |
分析:此题先把各个括号内的分数和运用1+2+…+n=(1+n)n÷2这个公式,写成分母为2的分数,然后进行简算,得出结果.
解答:解:1+
+(
+
)+(
+
+
)+…+(
+
+
+…+
+
),
=1+
+
+
+…+
,
=1+
,
=1+
,
=1+
,
=1+612.5,
=613.5.
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 50 |
| 2 |
| 50 |
| 3 |
| 50 |
| 48 |
| 50 |
| 49 |
| 50 |
=1+
| 1 |
| 2 |
| 2 |
| 2 |
| 3 |
| 2 |
| 49 |
| 2 |
=1+
| 1+2+…+49 |
| 2 |
=1+
| (1+49)×49÷2 |
| 2 |
=1+
| 50×49÷2 |
| 2 |
=1+612.5,
=613.5.
点评:此题考查了学生云用求和公式以及运算技巧,进行巧算的能力.
练习册系列答案
相关题目