题目内容
2.计算题| 28-$\frac{4}{5}$-$\frac{1}{5}$= | 2÷1$\frac{1}{3}$+2×$\frac{1}{3}$= | $\frac{4}{5}$×2.5×8= | 80%×1.25×4= |
| $\frac{1}{3}$×24÷$\frac{1}{3}$= | [($\frac{8}{9}$+1$\frac{1}{3}$ )×$\frac{3}{4}$-0.75]÷$\frac{1}{12}$= | 85×0.75+15×75%= | $\frac{3}{8}$×($\frac{7}{8}$+$\frac{1}{6}$)÷$\frac{3}{4}$= |
| $\frac{9}{10}$×($\frac{5}{6}$-$\frac{2}{3}$)÷$\frac{13}{25}$= | $\frac{1}{8}$×5.25+3.75÷8+$\frac{1}{8}$= |
分析 (1)运用减法的性质进行简算;
(2)先算乘除法,再算加法;
(3)运用乘法的结合律进行简算;
(4)从左向右进行计算;
(5)从左向右进行计算;
(6)先算小括号里的加法,再算中括号里的乘法、减法,最后算运用乘法的分配律进行简算;
(7)运用乘法的分配律进行简算;
(8)先算小括号里的加法,再从左向右进行计算;
(9)先算小括号里的减法,再从左向右进行计算;
(10)运用乘法的分配律进行简算.
解答 解:(1)28-$\frac{4}{5}$-$\frac{1}{5}$
=28-($\frac{4}{5}$+$\frac{1}{5}$)
=28-1
=27;
(2)2÷1$\frac{1}{3}$+2×$\frac{1}{3}$
=$\frac{3}{2}$+$\frac{2}{3}$
=$\frac{13}{6}$;
(3)$\frac{4}{5}$×2.5×8
=$\frac{4}{5}$×(2.5×8)
=$\frac{4}{5}$×20
=16;
(4)80%×1.25×4
=1×4
=4;
(5)$\frac{1}{3}$×24÷$\frac{1}{3}$
=8$÷\frac{1}{3}$
=24;
(6)[($\frac{8}{9}$+1$\frac{1}{3}$ )×$\frac{3}{4}$-0.75]÷$\frac{1}{12}$
=[$\frac{20}{9}$×$\frac{3}{4}$-0.75]÷$\frac{1}{12}$
=[$\frac{5}{3}$-0.75]×12
=$\frac{5}{3}$×12-0.75×12
=20-9
=11;
(7)85×0.75+15×75%
=(85+15)×75%
=100×75%
=75;
(8)$\frac{3}{8}$×($\frac{7}{8}$+$\frac{1}{6}$)÷$\frac{3}{4}$
=$\frac{3}{8}$×$\frac{25}{24}$÷$\frac{3}{4}$
=$\frac{25}{64}$$÷\frac{3}{4}$
=$\frac{25}{48}$;
(9)$\frac{9}{10}$×($\frac{5}{6}$-$\frac{2}{3}$)÷$\frac{13}{25}$
=$\frac{9}{10}$×$\frac{1}{6}$÷$\frac{13}{25}$
=$\frac{3}{20}$÷$\frac{13}{25}$
=$\frac{15}{52}$;
(10)$\frac{1}{8}$×5.25+3.75÷8+$\frac{1}{8}$
=$\frac{1}{8}$×(5.25+3.75+1)
=$\frac{1}{8}$×10
=$\frac{5}{4}$.
点评 本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.