题目内容

用递等式计算(能简算的要简算)
①(
1
4
+
1
2
)÷(1-
3
8
×
3
4
)             
②3.2×1.25+4.8×1
1
4

③[(5
2
3
-4
3
4
)÷1
5
6
]×25%              
15
16
+(
7
16
-
1
4
)÷
1
2
分析:1)把
1
4
+
1
2
3
8
×
3
4
同时计算,再做1-
9
32
,再算括号外面的除;
(2)把1
1
4
看成1.25,利用乘法分配律,据此进行计算即可;
(3)先算小括号里,再算中括号里,最后算括号外面的;
(4)(
7
16
-
1
4
)÷
1
2
利用乘法分配律计算,最后算加.
解答:①(
1
4
+
1
2
)÷(1-
3
8
×
3
4
);
=
3
4
÷(1-
9
32
),
=
3
4
×
32
23

=1
1
23

②3.2×1.25+4.8×1
1
4

=3.2×1.25+4.8×1.25,
=1.25×(3.2+4.8),
=1.25×8,
=10;
③[(5
2
3
-4
3
4
)÷1
5
6
]×25%,
=[
11
12
÷
11
6
1
4

=[
11
12
×
6
11
1
4

=
1
2
×
1
4

=
1
8

15
16
+(
7
16
-
1
4
)÷
1
2

=
15
16
+
3
16
÷
1
2

=
15
16
+
3
16
×2,
=
15
16
+
3
8

=1
5
16
点评:此题考查整数、分数、小数、百分数的四则混合运算,能简算要简算;不能简算的,有括号时,要按照先算括号里面的,再算括号外面的;没有括号时,要按照先算乘除法,再算加减法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网