题目内容

一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有
16
16
个约数.
分析:设这个自然数为a,则a分解质因数为:a=a1b1×a2b2×a3b3×…×anbn;则a3=a13b1×a23b2×a33b3×…×an3bn;(n为项数),根据约数和定理和100分解质因数的情况展开讨论分析即可解决问题.
解答:解:设这个自然数是a,则a分解质因数为:a=a1b1×a2b2×a3b3×…×anbn;则a3=a13b1×a23b2×a33b3×…×an3bn;(n为项数)
a3的约数个数为100个,根据约数和定理可得:(3b1+1)×(3b2+1)+(3b3+1)×…×(3bn+1)=100,
而100=2×2×5×5,又因为b1、b2、b3…都是整数,
所以符合题意的情况有:
(1)b1=3,b2=3,n=2时:a的约数个数为:(3+1)×(3+1)=16(个),
(2)b1=33,n=1时:
a的约数个数为:33+1=34(个),
答:综上所述,这个自然数本身最少有16个约数.
故答案为:16.
点评:此题考查了约数和定理的灵活应用.这就要求学生要灵活掌握约数和定理即:对于一个合数a,分解质因数后可以写成:a=a1b1×a2b2×a3b3×…×anbn的形式,则a的约数个数之和为:(b1+1)×(b2+1)+(b3+1)×…×(bn+1).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网