题目内容
25.5
25.5
平方厘米.分析:由图意可知:S△APQ=S长方形ABCD-S△ABQ-S△APD-S△PQC,S长方形ABCD、S△ABQ和S△APD已知,因此只要求出S△PQC即可,而求S△PQC,则应求出PC和QC与长方形的长和宽的关系,长方形的面积是已知的,于是可以依据长方形的面积,求出S△PQC,问题即可得解.
解答:解:因为S△ABQ=AB×BQ×
=5,
则AB×BQ=10,BQ=
,
QC=BC-
,
S△APD=AD×PD×
=11,
则AD×PD=22,PD=
,PC=DC-
,
所以S△PQC=
×(BC-
)×(DC-
),
=
×(AD-
)×(DC-
),
=
×(AD×DC-22-10+
),
=
×(55-22-10+
),
=
×(23+4),
=
×27,
=13.5(平方厘米);
S△AQP=55-5-11-13.5,
=50-24.5,
=25.5(平方厘米);
答:中间三角形的面积是25.5平方厘米.
故答案为:25.5.
| 1 |
| 2 |
则AB×BQ=10,BQ=
| 10 |
| AB |
QC=BC-
| 10 |
| AB |
S△APD=AD×PD×
| 1 |
| 2 |
则AD×PD=22,PD=
| 22 |
| AD |
| 22 |
| AD |
所以S△PQC=
| 1 |
| 2 |
| 10 |
| AB |
| 22 |
| AD |
=
| 1 |
| 2 |
| 10 |
| DC |
| 22 |
| AD |
=
| 1 |
| 2 |
| 220 |
| DC×AD |
=
| 1 |
| 2 |
| 220 |
| 55 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
=13.5(平方厘米);
S△AQP=55-5-11-13.5,
=50-24.5,
=25.5(平方厘米);
答:中间三角形的面积是25.5平方厘米.
故答案为:25.5.
点评:解答此题的关键是求出三角形PQC的面积,而求出PC和QC与长方形的长和宽的关系,更是关键的关键.
练习册系列答案
相关题目