2.
说明:求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是能够顺利求导的关键,因此必须深刻理解导数的概念.
证明函数的在一点处连续
例 证明:若函数在点处可导,则函数在点处连续.
分析:从已知和要证明的问题中去寻求转化的方法和策略,要证明在点处连续,必须证明.由于函数在点处可导,因此,根据函数在点处可导的定义,逐步实现两个转化,一个是趋向的转化,另一个是形式(变为导数定义形式)的转化.
解:证法一:设,则当时,,
∴函数在点处连续.
证法二:∵函数在点处可导,
∴在点处有
∴∴函数在点处连续.
说明:对于同一个问题,可以从不同角度去表述,关键是要透过现象看清问题的本质,正确运用转化思想来解决问题.函数在点处连续,有极限以及导数存在这三者之间的关系是:导数存在连续有极限.反之则不一定成立.证题过程中不能合理实现转化,而直接理解为是使论证推理出现失误的障碍.
2.求函数(a、b为常数)的导数.
分析:根据导数的概念求函数的导数是求导数的基本方法,确定函数在处的导数有两种方法,应用导数定义法和导函数的函数值法.
解:1.解法一(导数定义法):,
解法二(导函数的函数值法):,
∴
3.(含),
故选A.
说明:概念是分析解决问题的重要依据,只有熟练掌握概念的本质属性,把握其内涵与外延,才能灵活地应用概念进行解题,不能准确分析和把握给定的极限式与导数的关系,盲目套用导数的定义是使思维受阻的主要原因.解决这类问题的关键就是等价变形,使问题转化.
利用定义求导数
例 1.求函数在处的导数;
2.原式=