19. (本小题满分13分) 已知函数的图象经过点A(1,1),B(2,3) ,及C(n,Sn),Sn为数列的前n项的和,   (1)  求Sn及an  (2)  设bn=log2an-1,数列  的前n项和为Tn ,求证:

解 (1)由 2m+t=1得   t= -1

      4m+t=3     m=1              2分

所以 f(x)=2x -1  则 Sn=2n -1           4分

当n=1时,a1=S1=1满足上式,所以an=2n-1 ()     6 分

(2)证明:因为bn=log2an-1=n-2

所以             8分

所以 ,当n≥4时,     10分

所以  13分

20(本小题满分13分)

在一次数学实践活动课上,老师给一个活动小组安排了这样的一个任务:设计一个方案,将一块边长为4米的正方形铁片,通过裁剪、拼接的方式,将它焊接成容积至少有5立方米的长方体无盖容器(只有一个下底面和侧面的长方体).该活动小组接到任务后,立刻设计了一个方案,如下图所示,按图1在正方形铁片的四角裁去四个相同的小正方形后,将剩下的部分焊接成长方体(如图2).请你分析一下他们的设计方案切去边长为多大的小正方形后能得到的最大容积,最大容积是多少?是否符合要求?若不符合,请你帮他们再设计一个能符合要求的方案,简单说明操作过程和理由.

解:(1)设切去正方形边长为x,则焊接成的长方体的底面边长为4-2x,高为x

所以V1= (4-2x)2·x = 4(x3-4x2 + 4x)  (0<x<2) .……….. ……….. ……….. 4分

∴V1/ = 4(3x2-8x + 4),……….. ……….. ……….. ……….. ……….. ………. ….5分

令V1/ = 0,即4(3x2-8x + 4) = 0,解得x1 = ,x2 = 2 (舍去) .……….. ………7分

∵  V1在(0,2)内只有一个极值,  

∴ 当x = 时,V1取得最大值.<5,即不符合要求. ….…. …. 9分

(2)重新设计方案如下:

如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;如图③,将图②焊成长方体容器.新焊长方体容器底面是一个长方形,长为3,宽为2,此长方体容积V2 = 3×2×1 = 6,显然V2>5.

故第二种方案符合要求.

     

      图①            图②             图③

 …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. ….13分

注:第二问答案不唯一。

21(本小题满分13分)

已知函数(为实常数).

(Ⅰ) 若,求证:函数上是增函数;

(Ⅱ) 若存在x∈[1,e],使得成立,求实数的取值范围.

(Ⅲ) 求函数在[1,e]上的最小值及相应的x值;

解:(Ⅰ)当时,,当

故函数上是增函数.………………………………………………………………………2分

(Ⅱ) 不等式,  可化为.∵,

且等号不能同时取,所以,即,因而()…  4 分

(),又……………………………………

时,,…………………………………………………6分

从而(仅当x=1时取等号),所以上为增函数  ………………………………

的最小值为,所以实数的取值范围是……………………………………8分

(Ⅲ) ,当.………………………………

上非负(仅当时,),故函数上是增函数,此时. …………………………………………9分

,当时,;当时,,此时是减函数; 当时,,此时是增函数.故…    11…分

上非正(仅当时,),故函数上是减函数,此时. …………………………………………………………12分…

综上可知,当时,的最小值为1,相应的x值为1;

时,的最小值为,相应的x值为

时,的最小值为,相应的值为……………………………………………13分

 0  395186  395194  395200  395204  395210  395212  395216  395222  395224  395230  395236  395240  395242  395246  395252  395254  395260  395264  395266  395270  395272  395276  395278  395280  395281  395282  395284  395285  395286  395288  395290  395294  395296  395300  395302  395306  395312  395314  395320  395324  395326  395330  395336  395342  395344  395350  395354  395356  395362  395366  395372  395380  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网