摘要:3.关于叶肉细胞在光照条件下产生ATP的描述.正确的是( ) A.无氧条件下.光合作用是细胞ATP的唯一来源 B.有氧条件下.线粒体.叶绿体和细胞质基质都能产生ATP C.线粒体和叶绿体合成ATP都依赖氧 D.细胞质中消耗的ATP均来源于线粒体和叶绿体
网址:http://m.1010jiajiao.com/timu_id_4454050[举报]
(2012•黄浦区二模)对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.
查看习题详情和答案>>
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.
关于方程x2+2y2-ax+ay-a-1=0(a∈R)表示的椭圆,给出以下四个命题:①椭圆的中心在一条直线上运动;②椭圆的大小不变;③不论a取什么值,椭圆总过两个定点;④椭圆的离心率不变.其中错误命题的个数是 .
查看习题详情和答案>>
| 1 |
| 4 |
(1)求证:点B1,B2,…,Bn,…在同一条抛物线上,并求该抛物线C的方程;
(2)设直线l过坐标原点O,点B1关于l的对称点B′在y轴上,求直线l的方程;
(3)直线m过(1)中抛物线C的焦点F并交C于M、N,若
| MF |
| FN |
| EF |
| EM |
| EN |
查看习题详情和答案>>
医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的总数与天数的关系记录如下表.
已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的97%.
(1)根据表格提供的数据,写出N关于t的函数解析式.
(2)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?
(3)按(1)中的结论,第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天,参考数据:lg3=0.3010.)
查看习题详情和答案>>
| 天数t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
| 病毒细胞总数N | 1 | 3 | 9 | 27 | 81 | 243 | 729 | … |
(1)根据表格提供的数据,写出N关于t的函数解析式.
(2)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?
(3)按(1)中的结论,第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天,参考数据:lg3=0.3010.)