摘要:如图.在三角形中.>..分别是.上的点.△沿线段翻折.使点落在边上.记为.若四边形是菱形.则下列说法正确的是( ) A. 是△的中位线 B. 是边上的中线 C. 是边上的高 D. 是△的角平分线
网址:http://m.1010jiajiao.com/timu_id_4439030[举报]
如图,在三角形
中,
>
,
、
分别是
、
上的点,△
沿线段
翻折,使点
落在边
上,记为
.若四边形
是菱形,则下列说法正确的是( )
![]()
A.
是△
的中位线 B.
是
边上的中线
C.
是
边上的高 D.
是△
的角平分线
如图①,在锐角△ABC中,BC>AB>AC,D和E分别是BC和AB上的动点,连接AD,DE.
(1)当D、E运动时,在图②中画出仅有一组三角形相似的图形;在图③中画出仅有两组三角形相似的图形;在图④中画出仅有三组三角形相似的图形;(要求在图中标出相等的角,并写出相似的三角形)
(2)设BC=9,AB=8,AC=6,就图③求出DE的长.(直接应用相似结论)
查看习题详情和答案>>
(1)当D、E运动时,在图②中画出仅有一组三角形相似的图形;在图③中画出仅有两组三角形相似的图形;在图④中画出仅有三组三角形相似的图形;(要求在图中标出相等的角,并写出相似的三角形)
(2)设BC=9,AB=8,AC=6,就图③求出DE的长.(直接应用相似结论)
如图①,在锐角△ABC中,BC>AB>AC,D和E分别是BC和AB上的动点,连接AD,DE.
(1)当D、E运动时,在图②中画出仅有一组三角形相似的图形;在图③中画出仅有两组三角形相似的图形;在图④中画出仅有三组三角形相似的图形;(要求在图中标出相等的角,并写出相似的三角形)
(2)设BC=9,AB=8,AC=6,就图③求出DE的长.(直接应用相似结论)

查看习题详情和答案>>
如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=
x2于点A、B,交抛物线C2:y=
x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.
【猜想与证明】
填表:
由上表猜想:对任意m(m>0)均有
=______.请证明你的猜想.
【探究与应用】
(1)利用上面的结论,可得△AOB与△CQD面积比为______;
(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;
【联想与拓展】
如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为______.

查看习题详情和答案>>
【猜想与证明】
填表:
| m | 1 | 2 | 3 |
【探究与应用】
(1)利用上面的结论,可得△AOB与△CQD面积比为______;
(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;
【联想与拓展】
如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为______.
查看习题详情和答案>>
如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:
于点A、B,交抛物线C2:
于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.
【猜想与证明】
填表:
|
m |
1 |
2 |
3 |
|
|
|
|
|
由上表猜想:对任意m(m>0)均有
=
.请证明你的猜想.
【探究与应用】
(1)利用上面的结论,可得△AOB与△CQD面积比为 ;
(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;
【联想与拓展】
如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为 .
![]()
查看习题详情和答案>>