摘要:在中.... (Ⅰ)求的值, (Ⅱ)求的值. 解:(1)在中.由.得----------2分 又由正弦定理 ---------------3分 得:-------------------------------4分 (2)由余弦定理:得:--6分 即.解得或.所以------8分 所以.-----10分 .即------ --12分
网址:http://m.1010jiajiao.com/timu_id_4398023[举报]
从2009名学生中选取50名学生参加数学竞赛,若采用下面方法选取:先用简单随机抽样从2009人中剔除9人,剩下的2000人再按系统抽样的方法抽取50人,则在2009人中,每个人入选的机会( )
A、都相等,且为
| ||
| B、不全相等 | ||
| C、均不相等 | ||
D、都相等,且为
|
(2009•大连二模)(I)已知函数f(x)=x-
,x∈(
,
),P(x1,f(x1)),Q(x2,f(x2))是f(x)图象上的任意两点,且x1<x2.
①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;
②由①你得到的结论是:若函数f(x)在[a,b]上有导函数f′(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得f′(ξ)=
成立(用a,b,f(a),f(b)表示,只写出结论,不必证明)
(II)设函数g(x)的导函数为g′(x),且g′(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:
当x∈(0,1)时,f(1)x<g(x).
查看习题详情和答案>>
| 1 |
| x |
| 1 |
| 4 |
| 1 |
| 2 |
①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;
②由①你得到的结论是:若函数f(x)在[a,b]上有导函数f′(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得f′(ξ)=
| f(b)-f(a) |
| b-a |
| f(b)-f(a) |
| b-a |
(II)设函数g(x)的导函数为g′(x),且g′(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:
当x∈(0,1)时,f(1)x<g(x).