摘要:2..∴ 当或时..当时. ∴函数在和上是增函数.在上是减函数. ∴当时.函数取得极大值. 当时.函数取得极小值. 说明:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发.根据题设结构进行逆向联想.合理地实现了问题的转化.使抽象的问题具体化.在转化的过程中充分运用了已知条件确定了解题的大方向.可见出路在于“思想认识 .在求导之后.不会应用的隐含条件.因而造成了解决问题的最大思维障碍.
网址:http://m.1010jiajiao.com/timu_id_4393070[举报]
已知
,函数![]()
(1)当
时,求函数
在点(1,
)的切线方程;
(2)求函数
在[-1,1]的极值;
(3)若在
上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中
,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有 ![]()
![]()
对a分类讨论
,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 当
时,
又
∴ 函数
在点(1,
)的切线方程为
--------4分
(Ⅱ)令
有 ![]()
![]()
①
当
即
时
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
极大值 |
|
极小值 |
|
故
的极大值是
,极小值是![]()
②
当
即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述
时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设
,![]()
对
求导,得![]()
∵
,
![]()
∴
在区间
上为增函数,则![]()
依题意,只需
,即
解得
或
(舍去)
则正实数
的取值范围是(![]()
,
)
查看习题详情和答案>>
已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=log2x
(1)求当x<0时,求函数f(x)的表达式
(2)若g(x)=2x(x∈R)集合A={x|f(x)≥2},B={x|g(x)≥16或
≤g(x)≤1},试判断集合A和B的关系.
查看习题详情和答案>>
(1)求当x<0时,求函数f(x)的表达式
(2)若g(x)=2x(x∈R)集合A={x|f(x)≥2},B={x|g(x)≥16或
| ||
| 2 |
已知函数f(x)=log
x,
(1)当x∈[
,3]时,求f(x)的反函数g(x);
(2)求关于x的函数y=[g(x)]2-2ag(x)+3(a≤3)当x∈[-1.1]时的最小值h(a);
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间[p,q](p<q)使得函数在区间[p,q]上的值域为[p2,q2].
(Ⅰ)判断(2)中h(x)是否为“和谐函数”?若是,求出p,q的值或关系式;若不是,请说明理由;
(Ⅱ)若关于x的函数y=
+t(x≥1)是“和谐函数”,求实数t的取值范围.
查看习题详情和答案>>
| 1 |
| 3 |
(1)当x∈[
| 1 |
| 3 |
(2)求关于x的函数y=[g(x)]2-2ag(x)+3(a≤3)当x∈[-1.1]时的最小值h(a);
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间[p,q](p<q)使得函数在区间[p,q]上的值域为[p2,q2].
(Ⅰ)判断(2)中h(x)是否为“和谐函数”?若是,求出p,q的值或关系式;若不是,请说明理由;
(Ⅱ)若关于x的函数y=
| x2-1 |
已知函数f1(x)=lg|x-p1|,f2(x)=lg(|x-p2|+2)(x∈R,p1,p2为常数)
函数f(x)定义为对每个给定的实数x(x≠p1),f(x)=
(1)当p1=2时,求证:y=f1(x)图象关于x=2对称;
(2)求f(x)=f1(x)对所有实数x(x≠p1)均成立的条件(用p1、p2表示);
(3)设a,b是两个实数,满足a<b,且p1,p2∈(a,b),若f(a)=f(b)求证:函数f(x)在区间[a,b]上单调增区间的长度之和为
.(区间[m,n]、(m,n)或(m,n]的长度均定义为n-m)
查看习题详情和答案>>
函数f(x)定义为对每个给定的实数x(x≠p1),f(x)=
|
(1)当p1=2时,求证:y=f1(x)图象关于x=2对称;
(2)求f(x)=f1(x)对所有实数x(x≠p1)均成立的条件(用p1、p2表示);
(3)设a,b是两个实数,满足a<b,且p1,p2∈(a,b),若f(a)=f(b)求证:函数f(x)在区间[a,b]上单调增区间的长度之和为
| b-a |
| 2 |