网址:http://m.1010jiajiao.com/timu_id_4392552[举报]
解:(1)OA=1,OC=2
则A点坐标为(0,1),C点坐标为(2,0)
设直线AC的解析式为y=kx+b
![]()
解得![]()
直线AC的解析式为
··················· 2分
(2)
或![]()
(正确一个得2分)························· 8分
(3)如图,设![]()
过
点作
于F
![]()
由折叠知![]()
![]()
或2··········· 10分
解:(1)①(
,
);-----------2分
②
;--------------------4分
(2)△AO1O3经过旋转相似变换
,得到
,此时,线段O1O3变为线段
;------------------------------6分
经过旋转相似变换
,得到
,此时,线段
变为线段AO2.------------------------------8分
,
,
∴O1O3= AO2,O1O3⊥ AO2------10分
查看习题详情和答案>>解:作BE⊥l于点E,DF⊥l于点F. ……2分
∵∠α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,
∴∠ADF=∠α=36°.根据题意,得BE=24mm, DF=48mm. ……4分
在Rt△ABE中,sinα=BE/AB,∴AB=BE/sin36°=40(mm).……6分
在Rt△ADF中,cos∠ADF=DF/AD,∴AD=DF/COS36°=60(mm).8分
∴矩形ABCD的周长=2(40+60)=200(mm). ……10分
查看习题详情和答案>>解:(1)由抛物线C1:
得顶点P的坐标为(2,5)………….1分
∵点A(-1,0)在抛物线C1上∴
.………………2分
(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G..
∵点P、M关于点A成中心对称,
∴PM过点A,且PA=MA..
∴△PAH≌△MAG..
∴MG=PH=5,AG=AH=3.
∴顶点M的坐标为(
,5).………………………3分
∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到
∴抛物线C3的表达式
. …………4分
(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到
∴顶点N、P关于点Q成中心对称.
由(2)得点N的纵坐标为5.
设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R.
∵旋转中心Q在x轴上,
∴EF=AB=2AH=6.
∴EG=3,点E坐标为(
,0),H坐标为(2,0),R坐标为(m,-5).
根据勾股定理,得
①当∠PNE=90º时,PN2+ NE2=PE2,
解得m=
,∴N点坐标为(
,5)
②当∠PEN=90º时,PE2+ NE2=PN2,
解得m=
,∴N点坐标为(
,5).
③∵PN>NR=10>NE,∴∠NPE≠90º ………7分
综上所得,当N点坐标为(
,5)或(
,5)时,以点P、N、E为顶点的三角形是直角三角形.…………………………………………………………………………………8分