摘要:22.[解](1)设双曲线的方程为 .解额双曲线的方程为 (2)直线.直线 由题意.得.解得 (3)[证法一]设过原点且平行于的直线 则直线与的距离当时. 又双曲线的渐近线为 双曲线的右支在直线的右下方. 双曲线右支上的任意点到直线的距离大于. 故在双曲线的右支上不存在点.使之到直线的距离为 [证法二]假设双曲线右支上存在点到直线的距离为. 则 由(1)得 设. 当时., 将代入(2)得 . 方程不存在正根.即假设不成立. 故在双曲线的右支上不存在点.使之到直线的距离为
网址:http://m.1010jiajiao.com/timu_id_4383166[举报]
设双曲线
的两个焦点分别为
、
,离心率为2.
(1)求双曲线的渐近线方程;
(2)过点
能否作出直线
,使
与双曲线
交于
、
两点,且
,若存在,求出直线方程,若不存在,说明理由.
【解析】(1)根据离心率先求出a2的值,然后令双曲线等于右侧的1为0,解此方程可得双曲线的渐近线方程.
(2)设直线l的方程为
,然后直线方程与双曲线方程联立,消去y,得到关于x的一元二次方程,利用韦达定理
表示此条件,得到关于k的方程,解出k的值,然后验证判别式是否大于零即可.
查看习题详情和答案>>
| |||||||||||
| |||||||||||||||