网址:http://m.1010jiajiao.com/timu_id_4366200[举报]
(1)选修4-2:矩阵与变换
变换T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M′(2x,4y).
(Ⅰ)求变换T的矩阵;
(Ⅱ)圆C:x2+y2=1在变换T的作用下变成了什么图形?
(2)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线C1的极坐标方程为:5ρ2-3ρ2cos2θ-8=0,直线?的参数方程为:
|
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)直线?上有一定点P(1,0),曲线C1与?交于M,N两点,求|PM|.|PN|的值.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
| 1 |
| 4 |
| 1 |
| 9 |
(Ⅰ)求证:a2+
| 1 |
| 4 |
| 1 |
| 9 |
| (a+b+c)2 |
| 14 |
(Ⅱ)求实数m的取值范围.
(1)选修4-2:矩阵与变换
已知矩阵A=
|
①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
|
| 7 |
| 4 |
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
| x2 |
| 16 |
| y2 |
| 5 |
| z2 |
| 4 |
某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:
|
序 号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
身高x(厘米) |
192 |
164 |
172 |
177 |
176 |
159 |
171 |
166 |
182 |
166 |
|
脚长y( 码 ) |
48 |
38 |
40 |
43 |
44 |
37 |
40 |
39 |
46 |
39 |
|
序 号 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
|
身高x(厘米) |
169 |
178 |
167 |
174 |
168 |
179 |
165 |
170 |
162 |
170 |
|
脚长y( 码 ) |
43 |
41 |
40 |
43 |
40 |
44 |
38 |
42 |
39 |
41 |
(Ⅰ)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的
联黑框列表: (3分)
|
|
高 个 |
非高个 |
合 计 |
|
大 脚 |
|
|
|
|
非大脚 |
|
12 |
|
|
合 计 |
|
|
20 |
(Ⅱ) 若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:
①抽到12号的概率;②抽到“无效序号(超过20号)”的概率. (6分)
(Ⅲ) 根据题(1)中表格的数据,若按99.5%的可靠性要求,能否认为脚的大小与身高之间有关系?(可用数据482=2304、582=3364 、682=4624 、
、
)(5分)
查看习题详情和答案>>
本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分
(1)(本小题满分7分)选修4-2:矩阵与变换
变换
是将平面上每个点
的横坐标乘
,纵坐标乘
,变到点
.
(Ⅰ)求变换
的矩阵;
(Ⅱ)圆
在变换
的作用下变成了什么图形?
(2)(本小题满分7分)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线
的极坐标方程为:
,直线
的参数方程为:
(
为参数).
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)直线
上有一定点
,曲线
与
交于M,N两点,求
的值.
(3)(本小题满分7分)选修4-5:不等式选讲
已知
为实数,且![]()
(Ⅰ)求证:![]()
(Ⅱ)求实数m的取值范围.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知矩阵A=
①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
查看习题详情和答案>>