摘要:设a.b.c是单位向量.且a·b=0.则(a-c)·(b-c)的最小值为 ( ) A.-2 B.-2 C.-1 D.1- 解析:(a-c)·(b-c)=a·b-c·(a+b)+c2 =0-|c|·|a+b|·cos〈c.(a+b)〉+1 ≥0-| c ||a+b|+1=-+1 =-+1=-+1 =-+1. 答案:D
网址:http://m.1010jiajiao.com/timu_id_4354048[举报]
(2010•合肥模拟)已知数列{an}的前n项和为Sn,且Sn=2-an(n∈N*),函数f(x)=
x2+2x,数列{bn}满足bn+1=f′(bn),(n∈N*),b1=2,cn=
anbn,设{bn}的前n项和为Tn,Bn=
+
+…+
,An=c1+c2+…+cn.
(1)求{an}{bn}的通项公式;
(2)试比较An与Bn的大小,并说明理由.
查看习题详情和答案>>
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| T1 |
| 1 |
| T2 |
| 1 |
| Tn |
(1)求{an}{bn}的通项公式;
(2)试比较An与Bn的大小,并说明理由.
2(
| ||
| 3 |
2(
| ||
| 3 |
2(
| ||
| 3 |
2(
| ||
| 3 |