摘要:1求证: 2利用和(差)角公式化简: 1证明(1) 证法一:左边=sinαcos+cosαsin=sin(α+)=右边 证法二:右边=sinαcos+cosαsin=sinα+cosα=左边 (2)cosθ+sinθ=sin(θ+) 证法一:左边=(cosθ+sinθ) =(sincosθ+cossinθ) =sin(θ+)=右边 证法二:右边=(sinθcos+cosθsin) =(sinθ+cosθ) =cosθ+sinθ=左边 (3) (sinx+cosx)=2cos (x-) 证法一:左边=(sinx+cosx)=2(sinx+cosx) =2(cosxcos+sinxsin) =2cos(x-)=右边 证法二:右边=2cos(x-)=2(cosxcos+sinxsin) =2(cosx+sinx) =(cosx+sinx)=左边 2解:(1) sinx+cosx=sinxcos+cosxsin=sin(x+) 或:原式=sinxsin+cosxcos=cos(x-) (2)3sinx-3cosx=6(sinx-cosx) =6(sinxcos-cosxsin) =6sin(x-) 或:原式=6(sinsinx-coscosx)=-6cos(x+) (3) sinx-cosx=2(sinx-cosx) =2sin(x-)=-2cos(x+) (4) sin(-x)+cos(-x) =[sin(-x)+cos(-x)] =[sinsin(-x)+coscos(-x)] =cos[-(-x)]=cos(x-) 或:原式=[sin(-x)cos+cos(-x)sin] =sin[(-x)+]=sin(-x)

网址:http://m.1010jiajiao.com/timu_id_4064178[举报]

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网