摘要:1.双曲线定义: (1)到两个定点F1与F2的距离之差的绝对值等于定长(<|F1F2|)的点的轨迹((为常数))这两个定点叫双曲线的焦点 (2)动点到一定点F的距离与它到一条定直线l的距离之比是常数e(e>1)时.这个动点的轨迹是双曲线这定点叫做双曲线的焦点.定直线l叫做双曲线的准线
网址:http://m.1010jiajiao.com/timu_id_4057160[举报]
定义变换T:
可把平面直角坐标系上的点P(x,y)变换到这一平面上的点P′(x′,y′).特别地,若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程.并求出当θ=arctan
时,其两个焦点F1、F2经变换公式T变换后得到的点F1′和F2′的坐标;
(2)当θ=arctan
时,求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:
(θ≠
,k∈Z)下的不动点的存在情况和个数.
查看习题详情和答案>>
|
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
| 2 |
| 3 |
| 4 |
(2)当θ=arctan
| 3 |
| 4 |
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:
|
| kπ |
| 2 |
已知椭圆C:
+
=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
+
=1以抛物线y2=4
x的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
y异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由. 查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
| 1 |
| mn |
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由. 查看习题详情和答案>>
已知椭圆C:
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
以抛物线
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.
查看习题详情和答案>>
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.
查看习题详情和答案>>