摘要: 定义:若对定义域上的任意实数都有.则称函数为上的零函数.根据以上定义.“是上的零函数或是上的零函数 为“与的积函数是上的零函数 的 条件.
网址:http://m.1010jiajiao.com/timu_id_4038035[举报]
定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)证明f(x)为减函数;若函数f(x)在[-3,3]上总有f(x)≤6成立,试确定f(1)应满足的条件;(3)解关于x的不等式
f(ax2)-f(x)>
f(a2x)-f(a),(n是一个给定的自然数,a<0)
查看习题详情和答案>>
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)证明f(x)为减函数;若函数f(x)在[-3,3]上总有f(x)≤6成立,试确定f(1)应满足的条件;(3)解关于x的不等式
| 1 |
| n |
| 1 |
| n |
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
已知函数
;
.
(1)当
时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(2)若函数
在
上是以3为上界的有界函数,求实数
的取值范围;
(3)若
,函数
在
上的上界是
,求
的取值范围.
查看习题详情和答案>>
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.已知函数
.
(1)当
时,求函数
在
上的值域,判断函数
在
上是否为有界函数,并说明理由;
(2)若函数
在
上是以3为上界的有界函数,求实数a的取值范围.