摘要:4.若的值为 ( ) A. B. C. D. 5.已知数列.若利用如图所示的种序框图计算该数列的第10项.则判断框内的条件是 ( ) A. B. C. D.
网址:http://m.1010jiajiao.com/timu_id_4032458[举报]
已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,-π<φ≤π.若函数f(x)的最小正周期为6π,且当x=
时,f(x)取得最大值,则( )
| π |
| 2 |
| A、f(x)在区间[-2π,0]上是增函数 |
| B、f(x)在区间[-3π,-π]上是增函数 |
| C、f(x)在区间[3π,5π]上是减函数 |
| D、f(x)在区间[4π,6π]上是减函数 |
为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人
(Ⅰ) 请将上面的列联表补充完整;
(Ⅱ) 在犯错误的概率不超过0.005的情况下认为喜欢看该节目节目与性别是否有关?说明你的理由;
( III) 已知喜欢看该节目的10位男生中,A1、A2、A3、A4、A5还喜欢看新闻,B1、B2、B3还喜欢看动画片,C1、C2还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
(参考公式:K2=
,其中n=a+b+c+d)
查看习题详情和答案>>
| 喜欢看该节目 | 不喜欢看该节目 | 合计 | |
| 女生 | 5 | ||
| 男生 | 10 | ||
| 合计 | 50 |
(Ⅱ) 在犯错误的概率不超过0.005的情况下认为喜欢看该节目节目与性别是否有关?说明你的理由;
( III) 已知喜欢看该节目的10位男生中,A1、A2、A3、A4、A5还喜欢看新闻,B1、B2、B3还喜欢看动画片,C1、C2还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
| P(K2≥K) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
已知定义在R上的函数f(x)满足f(2-x)+f(x)=0和f(x-2)+f(x)=0,且当x∈[1,2]时f(x)=1-(x-2)2.若直线y=kx(k为常数),与函数f(x)的图象在区间(-2,5)上恰有4个公共点,则实数k的取值范围是( )
A、(2
| ||
B、(2
| ||
C、(-
| ||
D、(-
|