摘要:1.了解圆锥曲线的实际背景.感受圆锥曲线在刻画现实世界和解决实际问题中的作用,
网址:http://m.1010jiajiao.com/timu_id_4030624[举报]
以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
|-|
|=k,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若
=
(
+
),则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
-y2=1和椭圆
+
=1有相同的焦点.
其中真命题的序号为
查看习题详情和答案>>
①设A、B为两个定点,k为非零常数,|
| PA |
| PB |
②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若
| OP |
| 1 |
| 2 |
| OA |
| OB |
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
| x2 |
| 35 |
| x2 |
| 25 |
| y2 |
| 9 |
其中真命题的序号为
③
③
(写出所有真命题的序号)
已知抛物线y2=2px(p>0),点P(m,n)为抛物线上任意一点,其中m≥0.
(1)判断抛物线与正比例函数的交点个数;
(2)定义:凡是与圆锥曲线有关的圆都称为该圆锥曲线的伴随圆,如抛物线的内切圆就是最常见的一种伴随圆.此外还有以焦点弦为直径的圆,以及以焦点弦为弦且过顶点的圆等.同类的伴随圆构成一个圆系,圆系中有无数多个圆.求证:抛物线内切圆系方程为:(x-p-m)2+y2=p2+2pm(其中m为参数且m≥0);
(3)请研究抛物线以焦点弦为直径的伴随圆,推导出其圆系方程,并写出一个关于它的正确命题. 查看习题详情和答案>>
(1)判断抛物线与正比例函数的交点个数;
(2)定义:凡是与圆锥曲线有关的圆都称为该圆锥曲线的伴随圆,如抛物线的内切圆就是最常见的一种伴随圆.此外还有以焦点弦为直径的圆,以及以焦点弦为弦且过顶点的圆等.同类的伴随圆构成一个圆系,圆系中有无数多个圆.求证:抛物线内切圆系方程为:(x-p-m)2+y2=p2+2pm(其中m为参数且m≥0);
(3)请研究抛物线以焦点弦为直径的伴随圆,推导出其圆系方程,并写出一个关于它的正确命题. 查看习题详情和答案>>
以下三个关于圆锥曲线的命题中:
①设A、B为两个定点,K为非零常数,若|PA|-|PB|=K,则动点P的轨迹是双曲线.
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率
③双曲线
-
=1与椭圆
+y2=1有相同的焦点.
④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切
其中真命题为
查看习题详情和答案>>
①设A、B为两个定点,K为非零常数,若|PA|-|PB|=K,则动点P的轨迹是双曲线.
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率
③双曲线
| x2 |
| 25 |
| y2 |
| 9 |
| x2 |
| 35 |
④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切
其中真命题为
②③④
②③④
(写出所以真命题的序号)