摘要:1.关于直线对称问题: (1)关于l :Ax +By +C =0对称问题:不论点.直线与曲线关于l 对称问题总可以转化为点关于l 对称问题.因为对称是由平分与垂直两部分组成.如求P(x0 .y0)关于l :Ax +By +C =0对称点Q(x1 .y1).有=-(1)与A·+B·+C =0. (2)解出x1 与y1 ,若求C1 :曲线f(x .y)=0关于l :Ax +By +C1 =0对称的曲线C2 .由上面的中求出x0 =g1(x1 .y1)与y0 =g2(x1 .y1).然后代入C1 :f [g1(x1 .y1).g2(x2 .y2)]=0.就得到关于l 对称的曲线C2 方程:f [g1(x .y).g2(x .y)]=0. (3)若l :Ax +By +C =0中的x .y 项系数|A|=1.|B |=1.就可以用直接代入解之.尤其是选择填空题.如曲线C1 :y2 =4 x -2关于l :x -y -4=0对称的曲线l2 的方程为:(x -4) 2 =4(y +4)-2.即y 用x -4代.x 用y +4代.这样就比较简单了. (4)解有关入射光线与反射光线问题就可以用对称问题来解决. 点与圆位置关系:P(x0 .y0)和圆C :(x -a) 2 +(y -b) 2 =r2. ①点P 在圆C 外有(x0 -a) 2 +(y0 -b) 2 >r2, ②点P 在圆上:(x0 -a) 2 +(y0 -b) 2 =r2, ③点P 在圆内:(x0 -a) 2 +(y0 -b) 2 <r2 .
网址:http://m.1010jiajiao.com/timu_id_4030366[举报]
(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)在曲线y=x-
上存在两个不同点关于直线y=x对称,求出其坐标;若曲线y=x+
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取a=
及a=
加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
]上单调递减,在区间[
,1)上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)
查看习题详情和答案>>
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)在曲线y=x-
| 2 |
| x |
| p |
| x |
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取a=
| 1 |
| 16 |
| ||
| 2 |
| 1 |
| e |
| 1 |
| e |
(2007•杨浦区二模)(文)设F1、F2分别为椭圆C:
+
=1(m>0,n>0且m≠n)的两个焦点.
(1)若椭圆C上的点A(1,
)到两个焦点的距离之和等于4,求椭圆C的方程.
(2)如果点P是(1)中所得椭圆上的任意一点,且
•
=0,求△PF1F2的面积.
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
-
=1(a>0,b>0)是否具有类似的性质?并证明你的结论.通过对上面问题进一步研究,请你概括具有上述性质的二次曲线更为一般的结论,并说明理由.
查看习题详情和答案>>
| x2 |
| m2 |
| y2 |
| n2 |
(1)若椭圆C上的点A(1,
| 3 |
| 2 |
(2)如果点P是(1)中所得椭圆上的任意一点,且
| PF1 |
| PF2 |
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
| x2 |
| a2 |
| y2 |
| b2 |
(2006•浦东新区模拟)(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)若曲线y=x+
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的取值范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
]上单调递减,在区间[
,1)上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)
查看习题详情和答案>>
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)若曲线y=x+
| p |
| x |
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
| 1 |
| e |
| 1 |
| e |