摘要:5.集合的简单性质: (1) (2) (3) (4), (5)(A∩B)=(A)∪(B).(A∪B)=(A)∩(B).
网址:http://m.1010jiajiao.com/timu_id_4030210[举报]
有关集合的性质:①?U(A∩B)=(?UA)∪(?UB);②(?UA)∪(?UB)=?U(A∪B);③A∩(?UA)=∅;④A∪(?UA)=U.其中正确的是
查看习题详情和答案>>
①③④
①③④
(填序号)已知集合P是满足下述性质的函数f(x)的全体:存在非零常数M,对于任意的x∈R,都有f(x+M)=-Mf(x)成立.
(1)设函数g(x)=sinπx,试证明:g(x)∈P;(2)当M=1时,试说明函数f(x)的一个性质,并加以证明;
(3)若函数h(x)=sinωx∈P,求实数ω的取值范围.
查看习题详情和答案>>
(1)设函数g(x)=sinπx,试证明:g(x)∈P;(2)当M=1时,试说明函数f(x)的一个性质,并加以证明;
(3)若函数h(x)=sinωx∈P,求实数ω的取值范围.
20、已知集合A={1,2,3,…,2n(n∈N*)}.对于A的一个子集S,若存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有|s1-s2|≠m,则称S具有性质P.
(Ⅰ)当n=10时,试判断集合B={x∈A|x>9}和C={x∈A|x=3k-1,k∈N*}是否具有性质P?并说明理由.
(II)若集合S具有性质P,试判断集合 T={(2n+1)-x|x∈S)}是否一定具有性质P?并说明理由.
查看习题详情和答案>>
(Ⅰ)当n=10时,试判断集合B={x∈A|x>9}和C={x∈A|x=3k-1,k∈N*}是否具有性质P?并说明理由.
(II)若集合S具有性质P,试判断集合 T={(2n+1)-x|x∈S)}是否一定具有性质P?并说明理由.