摘要:求下列无穷等比数列各项的和: (1) (2) (3) (4)
网址:http://m.1010jiajiao.com/timu_id_4027273[举报]
设等差数列
的公差为
,且
.若设
是从
开始的前
项数列的和,即
,
,如此下去,其中数列
是从第
开始到第
)项为止的数列的和,即
.
(1)若数列
,试找出一组满足条件的
,使得:
;
(2)试证明对于数列
,一定可通过适当的划分,使所得的数列
中的各数都为平方数;
(3)若等差数列
中
.试探索该数列中是否存在无穷整数数列
,使得
为等比数列,如存在,就求出数列
;如不存在,则说明理由.
设等差数列
的公差为
,且
.若设
是从
开始的前
项数列的和,即
,
,如此下去,其中数列
是从第
开始到第
)项为止的数列的和,即
.
(1)若数列
,试找出一组满足条件的
,使得:
;
(2)试证明对于数列
,一定可通过适当的划分,使所得的数列
中的各数都为平方数;
(3)若等差数列
中
.试探索该数列中是否存在无穷整数数列
,使得
为等比数列,如存在,就求出数列
;如不存在,则说明理由.
(1)若数列
(2)试证明对于数列
(3)若等差数列
如果无穷数列{an}满足下列条件:①
≤an+1;②存在实数M,使an≤M.其中n∈N*,那么我们称数列{an}为Ω数列.
(1)设数列{bn}的通项为bn=5n-2n,且是Ω数列,求M的取值范围;
(2)设{cn}是各项为正数的等比数列,Sn是其前项和,c3=
,S3=
证明:数列{Sn}是Ω数列;
(3)设数列{dn}是各项均为正整数的Ω数列,求证:dn≤dn+1.
查看习题详情和答案>>
| an+an+2 |
| 2 |
(1)设数列{bn}的通项为bn=5n-2n,且是Ω数列,求M的取值范围;
(2)设{cn}是各项为正数的等比数列,Sn是其前项和,c3=
| 1 |
| 4 |
| 7 |
| 4 |
(3)设数列{dn}是各项均为正整数的Ω数列,求证:dn≤dn+1.