摘要: 解:根据题意得:···························································· 4分 整理得:······················································································· 6分 (元)··················································································· 7分 (件)·························································································· 8分 答:每件商品的售价应定为40元.每天要销售这种商品20件.···································· 9分
网址:http://m.1010jiajiao.com/timu_id_4025746[举报]
根据一元二次方程根的定义,解答下列问题.
一个三角形两边长分别为3cm和7cm,第三边长为a cm,且整数a满足a2-10a+21=0,求三角形的周长.
解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)
当a=5时,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
同理可知a=6,a=8,a=9都不是方程的根.
∴a=7是方程的根.(第二步)
∴△ABC的周长是3+7+7=17(cm).
上述过程中,第一步是根据
查看习题详情和答案>>
一个三角形两边长分别为3cm和7cm,第三边长为a cm,且整数a满足a2-10a+21=0,求三角形的周长.
解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)
当a=5时,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
同理可知a=6,a=8,a=9都不是方程的根.
∴a=7是方程的根.(第二步)
∴△ABC的周长是3+7+7=17(cm).
上述过程中,第一步是根据
三角形任意两边之和大于第三边,任意两边之差小于第三边
三角形任意两边之和大于第三边,任意两边之差小于第三边
,第二步应用了分类讨论
分类讨论
数学思想,确定a的值的大小是根据方程根的定义
方程根的定义
.在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c,如图所示,过C作CD⊥AB于D,则
,即AD=bcosA。
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA (1)
同理可得:b2=a2+c2-2accosB (2)
c2=a2+b2-2abcosC (3)
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素。
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=
,∠B,∠C则可由式子(2)、(3)分别求出,在此略,根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数。(保留整数)
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA (1)
同理可得:b2=a2+c2-2accosB (2)
c2=a2+b2-2abcosC (3)
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素。
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数。(保留整数)
![]()
在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB于D,则co
sA=
,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA (1)
同理可得:b2=a2+c2-2accosB (2)
c2=a2+b2-2abcosC (3)
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3
,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数) 查看习题详情和答案>>
| AD |
| b |
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA (1)
同理可得:b2=a2+c2-2accosB (2)
c2=a2+b2-2abcosC (3)
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3
| 3 |
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数) 查看习题详情和答案>>
(2007,新疆维吾尔自治区、新疆生产建设兵团,23)在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c如图所示,过C作CD⊥AB于D,则
,即AD=bcosA
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有
∴![]()
整理得:![]()
同理可得:![]()
![]()
这个结论就是著名的余弦定理.在以上三个等式中有六个元素a、b,c,∠A、∠B、∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6
则由(1)式可得:![]()
∴
,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a、b、c分别是7、8、9,求∠A、∠B、∠C的度数(保留整数).
![]()