摘要:22. 已知曲线过上一点作一斜率为的直线交曲线于另一点.点列的横坐标构成数列.其中. (I)求与的关系式, (II)令.求证:数列是等比数列, (III)若(λ为非零整数.).试确定λ的值.使得对任意.都有cn+1>cn成立.
网址:http://m.1010jiajiao.com/timu_id_4024669[举报]
(本小题满分14分)
已知圆
方程为:
.
(Ⅰ)直线
过点
,且与圆
交于
、
两点,若
,求直线
的方程;
(Ⅱ)过圆
上一动点
作平行于
轴的直线
,设
与
轴的交点为
,若向量
,求动点
的轨迹方程,并说明此轨迹是什么曲线.
查看习题详情和答案>>
(本小题满分14分)已知圆
:
,点
,
,点
在圆
上运动,
的垂直平分线交
于点
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设
分别是曲线
上的两个不同点,且点
在第一象限,点
在第三象限,若
,
为坐标原点,求直线
的斜率
;
(Ⅲ)过点
,
且斜率为
的动直线
交曲线
于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出
的坐标,若不存在,说明理由.