摘要:由特殊到一般.从具体到抽象.以“引导设问 为主线.学生通过对问题的思考和解答.体验学习过程.自主探索和获取知识.从而得到圆的参数方程.同时在探索的过程中也提高学生的数学抽象思维能力.
网址:http://m.1010jiajiao.com/timu_id_4019896[举报]
12、在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式如从f(x)=lgx可抽象出f(x1•x2)=f(x1)+f(x2)的性质,那么由h(x)=
查看习题详情和答案>>
任意指数函数均可,如h(x)=2x
(填一个具体的函数)可抽象出性质h(x1+x2)=h(x1)•h(x2).已知f(x)=lgx:
(1)在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式,如从f(x)=lgx可抽象出性质:f(x1•x2)=f(x1)+f(x2).
对于下面两个具体函数,试分别抽象出一个与上面类似的性质:
由h(x)=2x可抽象出性质为
由φ(x)=3x+1可抽象出性质为
(2)g(x)=f(x2+6x+4)-f(x),求g(x)的最小值.
查看习题详情和答案>>
(1)在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式,如从f(x)=lgx可抽象出性质:f(x1•x2)=f(x1)+f(x2).
对于下面两个具体函数,试分别抽象出一个与上面类似的性质:
由h(x)=2x可抽象出性质为
h(x1+x2)=h(x1)•h(x2)
h(x1+x2)=h(x1)•h(x2)
,由φ(x)=3x+1可抽象出性质为
φ(x1+x2)=φ(x1)+φ(x2)
φ(x1+x2)=φ(x1)+φ(x2)
.(2)g(x)=f(x2+6x+4)-f(x),求g(x)的最小值.