摘要:1.不等式的解法 解不等式是求定义域.值域.参数的取值范围时的重要手段.与“等式变形 并列的“不等式的变形 .是研究数学的基本手段之一. 高考试题中.对解不等式有较高的要求.近两年不等式知识占相当大的比例. 与同解, (2)与同解.与同解, (3)与同解),
网址:http://m.1010jiajiao.com/timu_id_4019862[举报]
已知函数
的定义域为
且
,对任意
都有![]()
![]()
数列
满足
N
.证明函数
是奇函数;求数列
的通项公式;令
N
, 证明:当
时,
.
(本小题主要考查函数、数列、不等式等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识)
查看习题详情和答案>>已知函数f(x)=1-
(a>0,a≠1)是定义在R上的奇函数
(1)求a的值;
(2)用定义法证明f(x)在定义域R上单调递增;
(3)解不等式f(x2-2)+f(x)>0.
查看习题详情和答案>>
| 2 | ||
ax+
|
(1)求a的值;
(2)用定义法证明f(x)在定义域R上单调递增;
(3)解不等式f(x2-2)+f(x)>0.
已知二次函数f(x)=ax2+bx+3是偶函数,且过点(-1,4),函数g(x)=x+4.
(1)求f(x)的解析式;
(2)求函数y=f(2x)+g(2x+1)的值域;
(3)定义在[p,q]上的一个函数m(x),用分法T:p=x0<x1<…<xi-1<xi<…<xn=q将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得不等式|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xi)-m(xi-1)|+…+|m(xn)-m(xn-1)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数.试判断函数f(x)是否为在[1,2]上的有界变差函数?若是,求M的最小值;若不是,请说明理由.
查看习题详情和答案>>
(1)求f(x)的解析式;
(2)求函数y=f(2x)+g(2x+1)的值域;
(3)定义在[p,q]上的一个函数m(x),用分法T:p=x0<x1<…<xi-1<xi<…<xn=q将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得不等式|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xi)-m(xi-1)|+…+|m(xn)-m(xn-1)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数.试判断函数f(x)是否为在[1,2]上的有界变差函数?若是,求M的最小值;若不是,请说明理由.