摘要: 如图.在直四棱柱ABCD-ABCD中.底面ABCD为等腰梯形.AB//CD.AB=4, BC=CD=2, AA=2, E.E.F分别是棱AD.AA.AB的中点. (1) 证明:直线EE//平面FCC, (2) 求二面角B-FC-C的余弦值. 解法一:(1)在直四棱柱ABCD-ABCD中.取A1B1的中点F1. 连接A1D.C1F1.CF1.因为AB=4, CD=2,且AB//CD. 所以CDA1F1.A1F1CD为平行四边形.所以CF1//A1D. 又因为E.E分别是棱AD.AA的中点.所以EE1//A1D. 所以CF1//EE1.又因为平面FCC.平面FCC. 所以直线EE//平面FCC. (2)因为AB=4, BC=CD=2, .F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC-C的一个平面角, 在△BCF为正三角形中,,在Rt△CC1F中, △OPF∽△CC1F,∵∴, 在Rt△OPF中,,,所以二面角B-FC-C的余弦值为. 解法二:(1)因为AB=4, BC=CD=2, F是棱AB的中点, 所以BF=BC=CF,△BCF为正三角形, 因为ABCD为 等腰梯形,所以∠BAC=∠ABC=60°,取AF的中点M, 连接DM,则DM⊥AB,所以DM⊥CD, 以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系, ,则D,A(,-1,0),F(,1,0),C, C1,E(,,0),E1(,-1,1),所以,,设平面CC1F的法向量为则所以取,则,所以,所以直线EE//平面FCC. (2),设平面BFC1的法向量为,则所以,取,则, ,, 所以,由图可知二面角B-FC-C为锐角,所以二面角B-FC-C的余弦值为. [命题立意]:本题主要考查直棱柱的概念.线面位置关系的判定和二面角的计算.考查空间想象能力和推理运算能力,以及应用向量知识解答问题的能力.

网址:http://m.1010jiajiao.com/timu_id_4017300[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网