摘要:[解析]对于
网址:http://m.1010jiajiao.com/timu_id_4016947[举报]
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
(b,c∈N)有且只有两个不动点0,2,且f(-2)<-
.
(1)求函数f(x)的解析式;
(2)已知各项不为零的数列{an}满足4Sn•f(
)=1,求数列通项an;
(3)如果数列{an}满足an=f(an),求证:当n≥2时,恒有an<3成立. 查看习题详情和答案>>
| x2+a |
| bx-c |
| 1 |
| 2 |
(1)求函数f(x)的解析式;
(2)已知各项不为零的数列{an}满足4Sn•f(
| 1 |
| an |
(3)如果数列{an}满足an=f(an),求证:当n≥2时,恒有an<3成立. 查看习题详情和答案>>
对于两个定义域相同的函数f(x),g(x),若存在实数m、n使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和个g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函数f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范围;
(3)试利用“基函数f(x)=log4(4+1)、g(x)=x-1”生成一个函数h(x),使之满足下列件:①是偶函数;②有最小值1;求函数h(x)的解析式并进一步研究该函数的单调性(无需证明). 查看习题详情和答案>>
(1)若f(x)=x2+3x和个g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函数f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范围;
(3)试利用“基函数f(x)=log4(4+1)、g(x)=x-1”生成一个函数h(x),使之满足下列件:①是偶函数;②有最小值1;求函数h(x)的解析式并进一步研究该函数的单调性(无需证明). 查看习题详情和答案>>
对于函数f(x),若x0∈R使得f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
(b∈N*),有且仅有两个不动点-1,1,且f(-2)<f(-1),则函数f(x)的解析式为
查看习题详情和答案>>
| x2+a |
| bx-c |
f(x)=
| x2+1 |
| 2x |
f(x)=
.| x2+1 |
| 2x |
对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.
查看习题详情和答案>>
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.