摘要: 在数列{}中.a=0.+=n+2n.求数列{}的通项公式. 解:由于+=n+2n .=-. 则+=-+=.即= n+2n.
网址:http://m.1010jiajiao.com/timu_id_4015534[举报]
已知数列{an}满足:a1+
+
+…+
=n2+2n(其中常数λ>0,n∈N*).
(1)求数列{an}的通项公式;
(2)当λ=4时,是否存在互不相同的正整数r,s,t,使得ar,a s,at成等比数列?若存在,给出r,s,t满足的条件;若不存在,说明理由;
(3)设Sn为数列{an}的前n项和.若对任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求实数λ的取值范围.
如图,设A是由n×n个实数组成的n行n列的数表,其中aij(i,j=1,2,3…,n)表示位于第i行第j列的实数,且aij∈{1,-1}.记S(n,n)为所有这样的数表构成的集合.
对于A∈S(n,n),记ri(A)为A的第i行各数之积,Cj(A)为A的第j列各数之积.令l(A)=
ri(A)+
Cj(A).
(Ⅰ)对如下数表A∈S(4,4),求l(A)的值;
(Ⅱ)证明:存在A∈S(n,n),使得l(A)=2n-4k,其中k=0,1,2,…,n;
(Ⅲ)给定n为奇数,对于所有的A∈S(n,n),证明:l(A)≠0.
查看习题详情和答案>>
| a11 | a12 | … | a1n |
| a21 | a22 | … | a2n |
| • • • |
• • • |
… | • • • |
| an1 | an2 | … | ann |
| n |
| i=1 |
| n |
| j=1 |
(Ⅰ)对如下数表A∈S(4,4),求l(A)的值;
| 1 | 1 | -1 | -1 |
| 1 | -1 | 1 | 1 |
| 1 | -1 | -1 | 1 |
| -1 | -1 | 1 | 1 |
(Ⅲ)给定n为奇数,对于所有的A∈S(n,n),证明:l(A)≠0.
在数列{
}中
=1,
=c
+cn+1(2n+1)(n∈N*),其中c≠0.
(Ⅰ)求{
}通项公式;
(Ⅱ)若对一切k∈N*有
>
,求c的取值范围.
查看习题详情和答案>>
| a | n |
| a | 1 |
| a | n+1 |
| a | n |
(Ⅰ)求{
| a | n |
(Ⅱ)若对一切k∈N*有
| a | 2k |
| a | 2k-1 |
如图,设A是由n×n个实数组成的n行n列的数表,其中aij(i,j=1,2,3…,n)表示位于第i行第j列的实数,且aij∈{1,-1}.记S(n,n)为所有这样的数表构成的集合.
对于A∈S(n,n),记ri(A)为A的第i行各数之积,Cj(A)为A的第j列各数之积.令l(A)=
ri(A)+
Cj(A).
(Ⅰ)对如下数表A∈S(4,4),求l(A)的值;
(Ⅱ)证明:存在A∈S(n,n),使得l(A)=2n-4k,其中k=0,1,2,…,n;
(Ⅲ)给定n为奇数,对于所有的A∈S(n,n),证明:l(A)≠0.
查看习题详情和答案>>
| a11 | a12 | … | a1n |
| a21 | a22 | … | a2n |
| • • • | • • • | … | • • • |
| an1 | an2 | … | ann |
(Ⅰ)对如下数表A∈S(4,4),求l(A)的值;
| 1 | 1 | -1 | -1 |
| 1 | -1 | 1 | 1 |
| 1 | -1 | -1 | 1 |
| -1 | -1 | 1 | 1 |
(Ⅲ)给定n为奇数,对于所有的A∈S(n,n),证明:l(A)≠0.
查看习题详情和答案>>