摘要:22. 若定义在区间D上的函数对于区间D上任意都有不等式 成立.则称函数在区间D上的凸函数. (I)证明:定义在R上的二次函数是凸函数, 的函数取得最大值时函数的解析式, (III)定义在R上的任意凸函数且.证明:
网址:http://m.1010jiajiao.com/timu_id_4004111[举报]
((本题14分)定义:若函数
在某一区间D上任取两个实数
、
,且
,都有
,则称函数
在区间D上具有性质L。
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。
(2)对于函数
,判断其在区间
上是否具有性质L?并用所给定义证明你的结论。
(3)若函数
在区间(0,1)上具有性质L,求实数
的取值范围。
((本题14分)定义:若函数
在某一区间D上任取两个实数
、
,且
,都有
,则称函数
在区间D上具有性质L。
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。
(2)对于函数
,判断其在区间
上是否具有性质L?并用所给定义证明你的结论。
(3)若函数
在区间(0,1)上具有性质L,求实数
的取值范围。
查看习题详情和答案>>
(本小题满分14分)对于定义在区间D上的函数
,若存在闭区间
和常数
,使得对任意
,都有
,且对任意
∈D,当
时,
恒成立,则称函数
为区间D上的“平底型”函数.
(Ⅰ)判断函数
和
是否为R上的“平底
型”函数? 并说明理由;
(Ⅱ)设
是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式
对一切
R恒成立,求实数
的取值范围;
(Ⅲ)若函数
是区间
上的“平底型”函数,求
和
的值.
.