摘要:已知:如图所示.在Rt△ABC中.∠ACB=90°. CD⊥AB于D.DE⊥AC于E.DF⊥BC于F. 求证:AE·BF·AB=CD3. 证明 ∵∠ACB=90°,CD⊥AB, ∴CD2=AD·BD.故CD4=AD2·BD2. 又∵Rt△ADC中.DE⊥AC. Rt△BDC中.DF⊥BC. ∴AD2=AE·AC.BD2=BF·BC. ∴CD4=AE·BF·AC·BC. 又∵AC·BC=AB·CD. ∴CD4=AE·BF·AB·CD.即AE·BF·AB=CD3.

网址:http://m.1010jiajiao.com/timu_id_3990840[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网