摘要:12.当0<x<时.函数f(x)=的最小值为 ( ) A.2 B.2 C.4 D.4 解析:f(x)===+≥2 =4.当 且仅当=.即tanx=时.取“= .∵0<x<.∴存在x使tanx=.这时f(x)min=4. 答案:C
网址:http://m.1010jiajiao.com/timu_id_3987006[举报]
(2010•合肥模拟)已知数列{an}的前n项和为Sn,且Sn=2-an(n∈N*),函数f(x)=
x2+2x,数列{bn}满足bn+1=f′(bn),(n∈N*),b1=2,cn=
anbn,设{bn}的前n项和为Tn,Bn=
+
+…+
,An=c1+c2+…+cn.
(1)求{an}{bn}的通项公式;
(2)试比较An与Bn的大小,并说明理由.
查看习题详情和答案>>
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| T1 |
| 1 |
| T2 |
| 1 |
| Tn |
(1)求{an}{bn}的通项公式;
(2)试比较An与Bn的大小,并说明理由.
2(
| ||
| 3 |
2(
| ||
| 3 |
2(
| ||
| 3 |
2(
| ||
| 3 |