摘要: (1)证明:∵AC是圆O的直径.∴∠ABC=90 o. 又∵AD⊥BP.∴∠ADB=90 o.∴∠ABC=∠ADB. 又∵PB是圆的切线.∴∠ABD=∠ACB. 在△ABC和△ADB中: .∴△ABC∽△ADB; (2)连结OP,在Rt△AOP中.AP=12厘米,OA=5厘米,根据勾股定理求得OP=13厘米,又由已知可证得△ABC∽△PAO, ∴,得,解得AB=厘米.
网址:http://m.1010jiajiao.com/timu_id_3982554[举报]
(1)已知DE=4,BE=6,求tan∠CBE的值.
(2)证明:AC是⊙O的切线.
(1)先作∠ACB的平分线;设它交AB边于点O,再以点O为圆心,OB为半径作⊙O(尺规作图,保留作图痕迹,不写作法);
(2)证明:AC是所作⊙O的切线;
(3)若BC=
| 3 |
| 1 |
| 2 |