摘要:8.已知函数若函数的图象上任一点P关于原点的对称点Q的轨迹恰好是函数的图象.(1)写出函数的解析式, (2)当.总有成立.求实数的取值范围.
网址:http://m.1010jiajiao.com/timu_id_3980360[举报]
已知函数f(x)=
在x=1处取得极值2.
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)若P(x0,y0)为f(x)=
图象上任意一点,直线l与f(x)=
的图象切于点P,求直线l的斜率k的取值范围.
查看习题详情和答案>>
| ax |
| x2+b |
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)若P(x0,y0)为f(x)=
| ax |
| x2+b |
| ax |
| x2+b |
已知函数f(x)=lnx,g(x)=
,设F(x)=f(x)+g(x).
(Ⅰ)当a=1时,求函数F(x)的单调区间;
(Ⅱ)若以函数y=F(x)(0<x≤3)图象上任意一点P(x0,y0)为切点的切线斜率k≤
恒成立,求实数a的最小值.
查看习题详情和答案>>
| a |
| x |
(Ⅰ)当a=1时,求函数F(x)的单调区间;
(Ⅱ)若以函数y=F(x)(0<x≤3)图象上任意一点P(x0,y0)为切点的切线斜率k≤
| 1 |
| 2 |
已知函数f(x)=alnx-ax-3(a∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[
+f′(x)]在区间(t,3)上总存在极值?
(Ⅲ)当a=2时,设函数h(x)=(p-2)x-
-3,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.
查看习题详情和答案>>
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[
| m |
| 2 |
(Ⅲ)当a=2时,设函数h(x)=(p-2)x-
| p+2e |
| x |