题目内容

已知函数f(x)=x3-ax2,其中a为实常数.
(1)设当x∈(0,1)时,函数y=f(x)图象上任一点P处的切线的斜线率为k,若k≥-1,求a的取值范围;
(2)当x∈[-1,1]时,求函数y=f(x)+a(x2-3x)的最大值.
分析:(1)根据导数的几何意义可将题转化为求使得f'(x)=3x2-2ax≥-1,x∈(0,1)恒成立的a的取值范围,进而利用分离参数即可求得结果;
(2)求函数g(x)=f(x)+a(x2-3x)=x3-3ax,x∈[-1,1]的导数,对方程g′(x)=3x2-3a=3(x2-a)=0有无实根,和有根,根是否在区间[-1,1]内进行讨论,求得函数的极值,再与f(-1)、f(1)比较大小,确定函数的最大值.
解答:解:(1)∴k=f'(x)=3x2-2ax,x∈(0,1).
由k≥-1,得3x2-2ax+1≥0,即a≤
3x2+1
2x
=
1
2
(3x+
1
x
)
恒成立
∴a≤
1
2
(3x+
1
x
min
∵当x∈(0,1)时,3x+
1
x
≥2
3x•
1
x
=2
3
,当且仅当x
3
时取等号.
∴(3x+
1
x
min=
3
.故a的取值范围是(-∞,
3
].
(2)设g(x)=f(x)+a(x2-3x)=x3-3ax,x∈[-1,1]则
g′(x)=3x2-3a=3(x2-a).
①当a≥1时,∴g′(x)≤0.从而g(x)在[-1,1]上是减函数.
∴g(x)的最大值为g(-1)=3a-1.
②当0<a<1时,g′(x)=3(x+
a
)(x-
a
).
由g′(x)>0得,x>
a
或x<-
a
:由g′(x)<0得,-
a
<x<
a

∴g(x)在[-1,-
a
],[
a
,1]上增函数,在[-
a
a
]上减函数.
∴g(x)的极大值为g(-
a
)=2a
a

由g(-
a
)-g(1)=2a
a
+3a-1=(
a
+1)2•(2
a
-1)知
当2
a
-1<0,即0≤a<
1
4
时,g(-
a
)<g(1)
∴g(x)max=g(1)=1-3a.
当2
a
-1≥0,即
1
4
<a<1时,g(-
a
)≥g(1)
∴g(x)max=g(-
a
)=2a
a

③当a≤0时,g′(x)≥0,从而g(x)在[-1,1]上是增函数.
∴g(x)max=g(1)=1-3a
综上分析,g(x)max=
3a-1,(a≥1)
2a
a
,(
1
4
≤a<1)
1-3a,(a<
1
4
)
点评:考查利用导数研究函数在闭区间上的最值问题,对方程g′(x)═0有无实根,和有根,根是否在区间[-1,1]内进行讨论,体现了分类讨论的思想方法,增加了题目的难度,同时考查了运算能力,属难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网