摘要: 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0.如果当n=n0时.命题成立.再假设当n=k(k≥n0.k∈N*)时.命题成立.(这时命题是否成立不是确定的).根据这个假设.如能推出当n=k+1时.命题也成立.那么就可以递推出对所有不小于n0的正整数n0+1.n0+2.-.命题都成立.
网址:http://m.1010jiajiao.com/timu_id_3972414[举报]
对于不等式
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即
<k+1,则当n=k+1时,
=
<
=
=(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法( )
| n2+n |
(1)当n=1时,
| 12+1 |
(2)假设当n=k(k∈N*)时,不等式成立,即
| k2+k |
| (k+1)2+(k+1) |
| k2+3k+2 |
| (k2+3k+2)+(k+2) |
| (k+2)2 |
则上述证法( )
| A、过程全部正确 |
| B、n=1验得不正确 |
| C、归纳假设不正确 |
| D、从n=k到n=k+1的推理不正确 |
对于不等式
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
<1+1,不等式成立.
(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即
<k+1,则当n=k+1时,
=
<
=
=(k+1)+1,
所以当n=k+1时,不等式成立,则上述证法 ( ).
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
查看习题详情和答案>>