摘要:2.不等式|x|+|x-1|<2的解集是 ( ) A. B.(-∞.-] C.(-.) D.[.+∞) 解析:利用绝对值的几何意义来解决.令|x|+|x-1|=2得x=-或.结合数轴得x∈(-.). 答案:C
网址:http://m.1010jiajiao.com/timu_id_3971606[举报]
设h(x)=x+
,x∈[
,5],其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
+
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围. 查看习题详情和答案>>
| m |
| x |
| 1 |
| 4 |
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
| h(x)+h(4x) |
| 2 |
| |h(x)-h(4x)| |
| 2 |
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围. 查看习题详情和答案>>
若整数m满足不等式x-
≤m<x+
,x∈R,则称m为x的“亲密整数”,记作{x},即{x}=m,已知函数f(x)x-{x}.给出以下四个命题:
①函数y=f(x),x∈R是周期函数且其最小正周期为1;
②函数y=f(x),x∈R的图象关于点(k,0),k∈Z中心对称;
③函数y=f(x),x∈R在[-
,
]上单调递增;
④方程f(x)=
sin(π•x)在[-2,2]上共有7个不相等的实数根.
其中正确命题的序号是
查看习题详情和答案>>
| 1 |
| 2 |
| 1 |
| 2 |
①函数y=f(x),x∈R是周期函数且其最小正周期为1;
②函数y=f(x),x∈R的图象关于点(k,0),k∈Z中心对称;
③函数y=f(x),x∈R在[-
| 1 |
| 2 |
| 1 |
| 2 |
④方程f(x)=
| 1 |
| 2 |
其中正确命题的序号是
①④
①④
.(写出所有正确命题的序号).仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.
查看习题详情和答案>>
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
| 10-x |
| 10+x |
(3)又若B={x|
| 10-x |
| 10+x |